Seminar WS 2015/16

Machine Learning and Artificial Neural Networks in Biomedical Applications
Milestones

- **Today**: kick-off meeting
 - General information
 - Presentation of topics
 - Choose your topics
 - First meeting with supervisor
Milestones

- Today: kick-off meeting
 - General information
 - Presentation of topics
 - Choose your topics
 - First meeting with supervisor

- December: outlines of presentation and written report

- **Week before presentations**: rehearsal presentation and first report

- January 29th, February 5th (Fridays): presentation sessions

- February 12th: final written report
What we expect

- Overall object: learn scientific/academic workflow

- Work independently 20%
 - Research your topic
 - Find, read and understand relevant papers
 - Select what to present

- Regularly meet with your supervisors, they’ll help you

- Written report 30%
 - English, scientific style, 15-20 pages, Latex template
 - draft – feedback – final version

- Presentation 50%
 - English, 20 minutes + 10 minutes discussion
 - Content, form, presentation skills
No Plagiarism! Don’t cheat!

Student submission:
Nevertheless, artificial intelligence showed that, nowadays, robots and machines have problems even remotely approaching human perceptual possibilities, apart from some highly domain-specific scenarios.

Original paper:
However, artificial intelligence has shown that, apart from some highly domain-specific scenarios, to this day, machines and robots have difficulties even remotely approaching human perceptual abilities.
No Plagiarism! Don’t cheat!

Student submission:

Nevertheless, artificial intelligence showed that, nowadays, robots and machines have problems even remotely approaching human perceptual possibilities, apart from some highly domain-specific scenarios.

Original paper:

However, artificial intelligence has shown that, apart from some highly domain-specific scenarios, to this day, machines and robots have difficulties even remotely approaching human perceptual abilities.

Use your own words!
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. **Closed-loop control of propofol anaesthesia using bispectral index**
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning
Topics

1. Adaptive Control of Artificial Pancreas Systems
2. Analysis and prediction of vital signs in hospitalized patients
3. Closed-loop control of propofol anaesthesia using bispectral index
4. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI
5. Hybrid fNIRS-EEG based classification of auditory and visual perception processes
6. An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface
7. Brain-to-text: decoding spoken phrases from phone representations in the brain
8. A brain-inspired spiking neural network model with temporal encoding and learning
9. Spike-Based Indirect Training of a Spiking Neural Network-Controlled Virtual Insect
10. Human-level control through deep reinforcement learning