Seminar WS 2016/17

Machine Learning and Artificial Neural Networks in Biomedical Applications
Milestones

- **Today**: kick-off meeting
 - General information
 - Presentation of topics
 - Choose your topics
 - First meeting with supervisor
Milestones

- Today: kick-off meeting
 - General information
 - Presentation of topics
 - Choose your topics
 - First meeting with supervisor

- December: outlines of presentation and written report

- **Week before presentations**: rehearsal presentation and first report

- January 27th, February 3th (Fridays): presentation sessions

- February 17th: final written report

Presentation sessions
27.01. 10:15 c.t. – 13
03.02. 14:15 c.t. – 17
What we expect

- Overall object: learn scientific/academic workflow

- Work independently 20 %
 - Research your topic
 - Find, read and understand relevant papers
 - Select what to present

- Regularly meet with your supervisors, they'll help you

- Written report 30 %
 - English, scientific style, 15-20 pages, Latex template
 - draft – feedback – final version

- Presentation 50 %
 - English, 20 minutes + 10 minutes discussion
 - Content, form, presentation skills
Student submission:

Nevertheless, artificial intelligence showed that, nowadays, robots and machines have problems even remotely approaching human perceptual possibilities, apart from some highly domain-specific scenarios.

Original paper:

However, artificial intelligence has shown that, apart from some highly domain-specific scenarios, to this day, machines and robots have difficulties even remotely approaching human perceptual abilities.
No Plagiarism! Don’t cheat!

Student submission:

Nevertheless, artificial intelligence showed that, nowadays, robots and machines have problems even remotely approaching human perceptual possibilities, apart from some highly domain-specific scenarios.

Original paper:

However, artificial intelligence has shown that, apart from some highly domain-specific scenarios, to this day, machines and robots have difficulties even remotely approaching human perceptual abilities.

Use your own words!
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics
1. Machine learning and decision support in medical applications—an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. **Ten-dimensional anthropomorphic arm control in a human brain-machine interface**
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain-machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain−machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. **Unsupervised classification of operator workload from brain signals**
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. **Deep Learning for Brain-Computer Interfaces**
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain-machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings
Topics

1. Machine learning and decision support in medical applications – an ongoing challenge
2. Disease prediction, detection and intelligent treatment using Machine Learning
4. Ten-dimensional anthropomorphic arm control in a human brain–machine interface
5. Eliciting naturalistic cortical responses with a sensory prosthesis via optimized microstimulation
6. Estimating workload using EEG spectral power and ERPs in the n-back task
7. Unsupervised classification of operator workload from brain signals
8. Deep Learning for Brain-Computer Interfaces
9. Convolutional Sketch Inversion
10. Optimal reduction of MCG in fetal MEG recordings