SystemQ Evaluating System-Level Design Choices Combining Queuing Networks and SystemC 12th SystemC Users Group Meeting, Lausanne, Switzerland

September 27, 2005

Sören Sonntag
Matthias Gries
Christian Sauer
Raimar Thudt

Infineon

Soeren.Sonntag@infineon.com

Never stop thinking.

Outline

- 1. Motivation
- 2. Introduction to SystemQ
- 3. Case study
- 4. Results and discussion

Designer's Dilemma

- Embedded systems
 - ◆ Computational complexity ↑
 - ◆ Novel parallel and programmable architectures ↑
 - ◆ Hardware and software concerns ↑
 - ◆ Time to market
 - ◆ Platform costs
 - ◆ Power dissipation
- Need for
 - Early design decisions
 - ◆ Performance estimations even in concept phase
 - Mapping of functionality onto computing resources
 - ◆ First time right

SystemC-based Simulation

Pros

- Discrete event simulation capabilities
- Supports different abstraction levels
- ◆ Refinement possible
- ◆ Distinct modules and communication

Cons

- ◆ Focused on
 - Transaction level
 - RT level

Performance Evaluation

- Queuing systems
 - Important analytical modeling technique
 - Steady-state analysis
 - ◆ Explicit scheduling
- Typical measures
 - Residence time of transactions
 - ◆ Average queue length
 - Server utilization
- Cons
 - ♦ No transient analysis
 - No path to implementation

SystemQ Overview

SystemC

SystemQ

- Rich class library
- **Exploitation of OO programming**
- Simulation even at concept phase of design
- Workload-dependent behavior can be simulated
- Systematic refinement steps
- Detailed insight into system

SystemQ Models

Sören Sonntag COM AC SE NP 2005-09-27

Block Diagram of a Packet Processing System

Abstraction Levels and Refinement

Sören Sonntag COM AC SE NP 2005-09-27

Simulation Performance of SystemQ

Sören Sonntag COM AC SE NP 2005-09-27

Modeling Effort and Quality of Results

- SystemQ simulation environment
 - ◆ 2.4 GHz Intel-based Linux PC
 - ◆ Comparison with Mentor Graphics VStationPRO emulator
- Modeling effort
 - ◆ RTL model to be built within roughly 100 man-weeks
 - SystemQ model within one man-week from scratch
- Quality of results
 - Quality increases with decreasing abstraction
 - ◆ High abstraction leads to high performance
 - → Balance of performance vs. quality
 - → SystemQ supports different abstraction levels

Conclusion

- SystemQ combines queuing systems and SystemC
- SystemQ features
 - Explicit scheduling
 - Simulation even in concept phase
 - Support of different abstraction levels
 - ◆ Path to implementation due to systematic refinement
- Case study revealed
 - ◆ Fast simulation
 - ◆ Low modeling effort

Thank you for your attention!