Modeling a GPS Receiver using SystemC

Modeling a GPS Receiver Using SystemC

Bernhard Niemann
Reiner Büttner
Martin Speitel

http://www.iis.fhg.de
http://www.iis.fhg.de/kursbuch/kurse/systemc.html
The Fraunhofer Institute for Integrated Circuits

Audio & Multimedia
Image Processing
Digital Broadcasting
Wireless Networks
Net Access Technology

ASICs
Vision Systems
X-Ray Technology
Security Systems
Training and Support
Transport Logistics
Introduction

- Introduction
- GPS Basics
- System Overview
- The Model
- Simulation Results
- Conclusions
GPS - A Brief Introduction

- GPS receivers measure the transmission time of signals sent by at least three satellites to determine the position
- For code phase detection a pseudo random noise (PRN) code is used
 - Navigation data is modulated on this code
 - There are two different PRN codes in use
 - C/A (Coarse Acquisition) - 1023 chips in length - 1.023 MCps
 - P(Y) (Precise) for military usage
- The GPS receiver has to strip off the C/A code in order to regenerate the navigation data
 - Use the properties of PRN sequences
 - Search for a peak in the auto correlation function
System - Architecture

IC 1
- ADC L1
- ADC L2
- T/H L1
- T/H L2
- RF L1
- RF L2

IC 2
- signal conditioning
- ADC L1
- ADC L2

FPGA
- correlation channel 1
- correlation channel 2
- correlation channel n
- GPS L1 C/A+P(Y)
- GPS L2 P(Y)
- GLONASS L1 C/A+P(Y)
- GLONASS L2 P(Y)

VHDL

Interface

DSP

ADC

L1

L2

T/H

L1

L2

RF

L1

L2

T/H

L2

RF

L2

RF

L1

T/H

L1
generate C/A code
delay the generated code within the E(early), P(resent), L(late) shift register
compare the incoming code with the delayed versions and integrate for one C/A code cycle (1023 chips)
send the integrated values to the DSP
the DSP calculates new input values for NCO and code generator
The DSP code

- Code tracking
 - synchronize code
 - shift generated code

- Frequency correction
 - strip off remaining carrier
 - set increment for NCO

- Phase correction
 - compensate phase offset
 - set offset for NCO
Why a SystemC Model of an Existing System?

- **Exploration**
 - different loop algorithms
 - different HW/SW partitioning possibilities
 - new architectural ideas

- **Experience**
 - comparison VHDL/SystemC
 - modeling with SystemC

- **Speed**
 - fast turn around times for new DSP code
 - more flexibility for input generation

- **Testing**
 - strobe what ever you want
 - generate different output formats without effort
 - have an executable spec for implementing features
The Approach - Levels of Hierarchy

- VHDL RTL -> SystemC RTL
 - std_logic -> bool
 - std_logic_vector -> int
- VHDL RTL -> SystemC Beh.
- Event driven modeling
- DSP code integration

Diagram:
- C/A Code
- E P L
- Integrate/ Dump
- NCO
- Interface
- DSP
The Approach - Loop Integration

- minimal modeling effort
- minimal integration effort for new code
- maximum simulation speed

void dsp_code()

- Start up code
- Code tracking
 - shift generated code
- Frequency correction
 - set increment for NCO
- Phase correction
 - set offset for NCO
- wait();
The Complete System

- FPGA
- DSP
- Pattern Generator
- Logic Analyzer
- PC
Simulation Results

- Input is C/A code data with code offset, frequency modulation (200Hz) and phase offset
- After correlation has been reached, the frequency correction starts
- The last step is to correct the phase
- 8bit representation is used for C/A code data, so maximum values are ± 127
Conclusions

➢ Pros

➢ Easy to bring existing HW and SW modules into SystemC
➢ HW/SW Codesign without any commercial tools
➢ Easy debugging
➢ Easy design exploration

➢ Cons

➢ Until now no converters (V)HDL <-> SystemC
➢ Some problems with SystemC data types

➢ Project will go on